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Linear stability of two-dimensional combined buoyant-thermocapillary flow
in cylindrical liquid bridges

M. Wanschura, H. C. Kuhlmann, and H. J. Rath
ZARM, Universita¨t Bremen, 28359 Bremen, Germany

~Received 6 February 1997!

The combined buoyant-thermocapillary flow in cylindrical liquid bridges of unit aspect ratio is calculated by
a mixed finite-difference–Chebyshev-collocation method. Gravity is assumed to be parallel or antiparallel to
the cylinder’s axis. For dominating thermocapillarity the two-dimensional basic flow is unique at the onset of
instability. It is shown that additional buoyant body forces act stabilizing on the axisymmetric flow in high
Prandtl number fluids for both heating and cooling from below. For heating from below, the onset of time-
dependent convection is delayed to higher Marangoni numbers than for cooling from below, in agreement with
previously unexplained experimental findings. In the absence of thermocapillary effects two axisymmetric
convective solutions bifurcate from the conducting basic state. This perfect pitchfork bifurcation is perturbed
by weak thermocapillary forces. The linear stability of all three axisymmetric base states is investigated
numerically for Pr54, a Prandtl number typical for model experiments.@S1063-651X~97!13906-X#

PACS number~s!: 47.20.Bp, 47.20.Dr, 81.10.Fq
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I. INTRODUCTION

A cylindrical volume of liquid captured between two rigi
coaxial disks of equal radii and different temperatures
been frequently employed@1–4# to model certain propertie
of the flow occurring in the float-zone crystal-growth proce
@5#. This model is called half-zone model or nonisotherm
liquid bridge, a sketch of which is shown in Fig. 1. It ha
emerged as an important paradigm for thermocapillary flo
and their instabilities.

For small temperature differencesDT imposed between
the upper and lower solid boundaries the basic flow driv
by thermocapillary surface forces is steady and takes
form of a single toroidal vortex, if the aspect ratioG5d/R
~d: height,R: radius! is of order one. A measure of the flow
strength is provided by the thermocapillary Reynolds num

Re5
gDTd

rn2
, ~1!

whereg52]s/]T denotes the negative coefficient of th
surface tensions with respect to temperature variations,r
the mean density, andn the kinematic viscosity. On an in
crease of the Reynolds or Marangoni number Ma5Re Pr the
flow becomes three dimensional. For small Prandtl numb
Pr5n/k ~k : thermal diffusivity! in the range of 0,Pr
&0.07 the supercritical three-dimensional flow is steady.
high Prandtl numbers Pr*0.5 three-dimensional hydrothe
mal waves appear above the threshold Reynolds num
Rec , which propagate approximately azimuthally. While t
basic thermocapillary instabilities are well known@4#, the
role of buoyancy measured by the Grashof number

Gr5
gbDTd3

n2
, ~2!

or Rayleigh number Ra52PrGr remains obsured.~g: ac-
celeration of gravity,b: thermal expansion coefficient. As i
most previous investigations we defineDT5T(d/2)
551063-651X/97/55~6!/7036~7!/$10.00
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2T(2d/2).0. By introducing the minus sign in the defin
tion of the Rayleigh number, it is positive when the liquid
heated from below in agreement with the usual convent
for pure buoyant flows.!Velten, Schwabe, and Scharmann@6#
carried out extensive measurements of the onset of t
mocapillary convection in half zones. For heating from b
low the critical Reynolds number for the onset of hydroth
mal waves was nearly always found to be larger than t
obtained during heating from above. This result is count
intuitive, since heating from above should essentially res
in a stable density stratification which, from a naive point
view, should stabilize the basic two-dimensional flow.

The purpose of the present paper is to clarify the role
gravity on the onset conditions for three-dimensional flo
To that end we consider the combined buoya
thermocapillary flow in a liquid bridge which axis is aligne
parallel to the gravity vector.

The applied temperature differenceDT is commonly used
as the control parameter in experiments. Then Gr and

FIG. 1. Sketch of a cylindrical liquid bridge. The flow directio
and thermocapillary shear stress are indicated by arrows
Ra.0, (gW↑↑eW z).
7036 © 1997 The American Physical Society



de

n

re
s
of

l
io
e
er

m
or
e
if
e

ri-
ri
in

the

o-
s

e

etri-

ev-
re

4
as

the

ob-

s

he

55 7037LINEAR STABILITY OF TWO-DIMENSIONAL . . .
cannot be varied independently. Their relative magnitu
the dynamic Bond number

Bd5
Gr

Re
5

rgbd2

g
, ~3!

may take different values. In the experiments of Velte
Schwabe, and Scharmann@6# using liquid bridges of length
O(3 mm), the absolute value of the Rayleigh number cor
sponding to the critical temperature difference for the on
of oscillatory three-dimensional flow was of the order
uRau'1300 for Pr51, uRau'9000 for Pr57, and
uRau'11 000 for Pr549. The Rayleigh numbersuRau for
Pr57 and Pr549 are significantly higher than the critica
Rayleigh number for the onset of pure buoyant convect
@7–9#. This is taken as an indication that buoyancy forc
cannot be neglected in a theoretical explanation of exp
mental results even for liquid bridges as short as 3 mm.

II. MATHEMATICAL FORMULATION
AND NUMERICAL SOLUTION TECHNIQUE

We consider a liquid bridge of lengthd between two con-
centric rigid disks of equal radiiR. In the asymptotic limit of
large mean surface tension between the liquid and an a
ent passive gas the location of the free surface is fixed. F
volumeV5pR2d it takes a straight cylindrical shape. If th
disks are heated differentially with a small temperature d
ferenceDT the fluid motion in the liquid is governed by th
Oberbeck-Boussinesq approximation

] tuW 1ReuW •¹W uW 52¹W p1DuW 1BdueW z , ~4!

¹W •uW 50, ~5!

] tu1ReuW •¹W u5
1

Pr
Du, ~6!

where the nondimensional temperatureu5(T2T0)/DT
~T0 : mean temperature! has been introduced and the va
ables have been made dimensionless using the characte
scales given in Table I. The boundary conditions for an
sulating free surface@4# are

] rw1]zu50

r ] r S vr D1
1

r
]wu50

u50
] ru50

6 on r5
1

G
, ~7!

while on the rigid disks the conditions

uW 50W , u561/2 on z561/2, ~8!

TABLE I. Scales used for the nondimensionalization of t
Oberbeck-Boussinesq equations.

variable r ,z t uW 5(u,v,w) p T

scale d d2/n gDT/rn gDT/d DT
,

,
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are imposed. The bridge is thus heated from above, if
acceleration of gravity is directed in negativez direction.

Decomposing the hydrodynamic fields into a steady tw
dimensional solution and three-dimensional normal mode

S u
v
w
p
u

D ~r ,z,w,t !5S u0
v0
w0

p0
u0

D ~r ,z!

15 S û
v̂
ŵ
p̂

Q̂

D ~r ,z!est1 imw1c.c.6 , ~9!

where c.c. denotes the complex conjugate,s is a complex
growth rate, andm an integer azimuthal wave number, th
linearized evolution equations for the disturbances read

suW 1Re$uW •¹W uW 01uW 0•¹W uW %52¹W p1DuW 1BdQeW z , ~10!

sQ1Re$uW •¹W u01uW 0•¹W Q%5
1

Pr
DQ, ~11!

where the hats have been dropped. The steady axisymm
cal problem and the eigenvalue problem~10! and ~11! have
been solved with a mixed finite-difference and Chebysh
collocation technique. Details of the numerical procedu
and the validation of the code can be found in@4#. The reso-
lutions used for the present calculations were 80~100! finite
difference points in axial direction and 20~25! Gauss-
Lobatto collocation points radially for Prandtl number
~0.02!. With these resolutions the numerical error, defined
in @4#, was kept below 5% in all cases presented.

Energy transport considerations proved valuable for
analysis of the instability mechanisms@4#. For later reference
we give the Reynolds-Orr and thermal energy equation
tained by multiplying Eq.~10! by uW , Eq. ~11! by Q, and
integrating over the volume occupied by the fluid.

dEkin
dt

5
1

2

d

dt EVuW 2dV52D1Mz1Mw1IGr1I v ,

~12!

dET
dt

5
1

2

d

dt EVQ2dV52DT1I T . ~13!

The terms of viscous dissipationD, Marangoni surface work
per timeMz andMw , and the work done by buoyant force
IGr are abbreviated as

D5E
V
~¹W 3uW !2dV22E

F
S v2r DdF, ~14!

Mz5E
F
wSrzdF, ~15!
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Mw5E
F
vSrwdF, ~16!

IGr5
Gr

Re EVwQ dV. ~17!

HereF denotes the free cylindrical surface andS the viscous
stress tensor. The energy production terms due to interac
with the basic state are

I v5(
i51

5

I v i52Re E
V
S v2 u0r 1u2

]u0
]r

1uw
]u0
]z

1wu
]w0

]r

1w2
]w0

]z DdV,
where the indexi numbers the terms consecutively. Anal
gously, the thermal dissipation rateDT and the thermal in-
jection rateI T are abbreviated,

DT5
1

Pr EV¹W Q•¹W QdV, ~18!

I T5(
i51

3

I Ti52Re E
V
QS u ]Q0

]r
1w

]Q0

]z
1wDdV,

~19!

whereQ05u02z is the deviation of the basic temperatu
field from the conductive profile. The integrals appearing
the energy equations have been computed using Simps
rule and finite differences for the derivatives of the fie
quantities.

III. RESULTS

When investigating combined buoyant-thermocapilla
flow instabilities it is useful to consider the limits of larg
and small Bond numbers separately. When the Bond num
is small, the steady two-dimensional flows and their instab
ties will be dominated by thermocapillarity. For large Bd o
the other hand, the flow will be mainly due to buoyant co
vection, modified by small thermocapillary effects. The
fluence of the respective second driving force cannot be
timateda priori, since both the basic state and the neu
mode are affected in a nontrivial manner. The limit of lar
and small Bond numbers is therefore investigated separa
for aspect ratioG51 and insulating free surface Bi50.
Moreover, we shall discern between small (Pr50.02) and
large (Pr54) Prandtl numbers.

The Oberbeck-Boussinesq equations~4!–~6! and bound-
ary conditions~7! and~8! are invariant under the transforma
tion

~Re,z,u,v,p!→~2Re,2z,2u,2v,2p!. ~20!

It follows that the two-dimensional basic states for mix
convection (BdÞ0) and their stability properties are sym
metric with respect to Re50. The symmetry operation~20!
corresponds to a reflection of the streamlines atz50 and an
inversion of the sense of rotation of the toroidal vortex~vor-
tices!. The following discussion is based on a liquid brid
on
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heated from above. Due to the definition of the temperat
difference asDT5T(d/2)2T(2d/2) we define the Ray-
leigh number as Ra52Gr Pr. Then Ra.0 for heating from
below as usual. A change from a stable thermal stratifica
~Gr.0, Ra,0, gW↓↑eW z! to a thermal unstable stratificatio
~Gr,0, Ra.0, gW↑↑eW z! may be imagined as an inversion o
thegW vector.

A. Dominating thermocapillary flow

1. Pr50.02

For Pr50.02 the rangeuRau,500 has been investigated
The critical mode has the wave numberm52 and it is sta-
tionary as in the case of pure thermocapillary driving (
50) ~see@4#!. The stability boundary as a function of Ra
shown in Fig. 2. The critical curve is nearly linear in th
considered range of Rayleigh numbers. The basic state
comes destabilized for a thermally unstable density stra
cation~Gr,0, Ra.0!, while it is stabilized for heating from
above~Gr.0, Ra,0!. This behavior is expected, since th
basic temperature field does not deviate much from the c
ducting state. However, the result is not trivial.

The thermal energy balance does not vary with Ra an
is not important for this range of parameters. The kine
energy balance for Re52000 as a function of the Rayleig
number is shown in Fig. 3. Like in the pure thermocapilla
case the kinetic energy transfer due to the process assoc

FIG. 2. Linear stability boundary Rec as a function of the Ray-
leigh number forG51 and Pr50.02. The critical wave number is
m52.

FIG. 3. Kinetic energy balance as a function of the Rayle
number Ra for Re52000,G51, and Pr50.02.
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55 7039LINEAR STABILITY OF TWO-DIMENSIONAL . . .
with I v4 is dominating. Therefore, the instability mechanis
is inertial as for Ra50. The work done by buoyant forces p
unit of time, IGr5Bd*VwQ dV, is insignificant since the
temperature fieldQ of the neutral mode is very small. Th
temperature field of the basic state for Re'2000~not shown,
cf. @4#!, however, deviates notably from the conducting p
file. Therefore, buoyant forces do modify the basic veloc
field. As a result the absolute value of the basic shear gr
ent (] rw0) supplying the energy for the disturbance grow
is reduced at the location of maximum amplification~near
r50.75, z50, see@4#! for Ra,0 ~see Fig. 4!. This reduces
the destabilizing energy transfer termI v4 . Likewise, for Ra
.0, I v4 is enhanced compared to Ra50. These argument
are based on the assumption that the neutral mode is u
fected by buoyancy. In fact, for the considered range of
the critical mode has qualitatively the same form as for
50 @4#.

2. Pr54

For Pr54 the stability boundary as a function of the Ra
leigh number behaves differently. As for Ra50 the critical
mode is oscillatory with wave numberm52 and develops
continuously from a hydrothermal wave. The stabil
boundary is displayed in Fig. 5 as a dashed curve. Excep
a small range of Rayleigh numbers~the minimum of the

FIG. 4. Radial dependence of the shear rate] rw0 of the axisym-
metry basic state atz50 for Re52000,G51, and Pr50.02. ~—!:
Ra50, ~---!: Ra5400, and~•••!: Ra52400.

FIG. 5. Stability diagram for large Rayleigh and Reynolds nu
bers~G51, Pr54!. For Re.0 the linearly stable range is bounde
from below by a stationary (m51)-instability ~—!. It is bounded
from above by an oscillatory instability~---! with m52 orm51.
-
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af-
a
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critical curve is located at Ra52360620! buoyancy forces
act stabilizing. Similar as for pure thermocapillary flow th
kinetic energy balance hardly changes with the parame
~Ra!. The thermal energy balance~shown in Fig. 6 for Re
51200! is important here. For Ra'0 the contributions due
to I T2 and I T3 are relatively small, but they reach the ma
nitude of I T1 , the term responsible for the appearance
hydrothermal waves, whenuRau5104. For Ra50, the flow
and temperature fields of the hydrothermal wave vary ne
exclusively in ther andw directions and the energy is mainl
transported radially. At Ra5O(104), however, a significant
amount of energy (I T2 ,I T3) is transported convectively in
vertical direction. This vertical transport is based on the ax
component of the disturbance velocity field and couples
the basic temperature field. The coupling to the conduc
part of the basic temperature field is — as expected —
bilizing for Ra,0 and destabilizing for Ra.0 ~see Fig. 6!.
The coupling toQ0 (I T2), however, behaves opposite. A
shown by Wanschura, Kuhlmann, and Rath@9#, the deviation
Q0 of the basic temperature field from the conducting pro
leads to a strong stabilization of the axisymmetric stea
buoyant flow in rigid cylinders, when the liquid is heate
from below (Ra.0). The same effect is present in liqui
bridges. Both are strong for Ra5O(104) but they nearly
compensate each other. Since the magnitude ofI T1 is re-
duced for increasing absolute values of Ra, the energy s
ply to the neutral mode is determined by a sensitive bala
of strong opposing forces which yield a net stabilization
the basic state for Ra.0 as well as for Ra,0. Another more
hand-waving explanation would be the following. Hydr
thermal waves in liquid bridges are characterized by stro
axial vorticity @4#. Buoyant convection on the contrary favo
convection rolls with strong horizontal vorticity. Therefor
both types of convection structures are incompatible in
sense that their respective transport mechanisms exc
each other. As a consequence both modes of convection
mutually suppressed yielding a stabilization of the basic tw
dimensional state.

Since the stabilization for negative Rayleigh numbers
less pronounced than that for positive Rayleigh numbers,
critical Reynolds numbers measured in terrestrial labora
ries for heating from above should be less than the ones
heating from below. In fact this holds true for the measu
ments of Velten, Schwabe, and Scharmann@6# for fluids with
Pr51 and Pr57. This experimental result—not explaine

-

FIG. 6. Thermal energy balance as a function of the Rayle
number Ra for Re51200,G51, and Pr54.
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7040 55M. WANSCHURA, H. C. KUHLMANN, AND H. J. RATH
previously—can thus be understood in the framework of
stability analysis performed. Therefore, critical Reyno
numbers obtained under weightlessness conditions (Ra50)
must be smaller than those obtained in terrestrial exp
ments, apart from a small range of Rayleigh numb
~2700&Ra,0 for Pr54! around the minimum of
Rec(Ra). This conclusion is in qualitative agreement w
recent drop tower experiments@10# in which the onset of
thermocapillary induced flow oscillations have been o
served after a high Prandtl number liquid bridge was s
jected to a sudden transition from 1g to '0g.

B. Dominating buoyant flow

The stability map for dominating buoyancy is more co
plicated. The main reason is that up to three different tw
dimensional basic flow states may exist. The typical bifur
tion structures are discussed here forG51 and Pr54.

Let us first consider only two-dimensional flows regar
less of their stability with respect to three-dimensional p
turbations. For Re50 the conductive state (uW 05Q050 ) be-
comes linearly unstable to a two-dimensional mode
Rac(m50)51825 via a perfect pitchfork bifurcation~see
@9#!. This bifurcation is shown as a dotted line in Fig. 7. F
Ra.Rac(m50) there exist two equivalent supercritical co
vective solutions representing flow states with up or dow
flow at the center (r5z50) of the liquid bridge in addition
to the unstable conducting state.

If ReÞ0 a structural instability@11# occurs and the bifur-
cation becomes imperfect. The imperfect bifurcation for
515 is drawn as full lines in Fig. 7. For a thermally unstab
stratification (Ra.0) the preferred two-dimensional conve
tive state has upflow in the center if Re.0. This state will be
calledstrong state(a) in the following. The corresponding
flow field consists of a single toroidal vortex, which sense
rotation is supported by both buoyant and thermocapill
forces~see Fig. 1; Fig. 8 applies to Re525. For Re.0 the
streamlines must be reflected atz50.!. For Rayleigh num-

FIG. 7. Perfect bifurcation of the two-dimensional natural co
vection ~•••! and imperfect bifurcation due to the action of we
thermocapillary surface forces. Shown are the axial velocities in
centerw0(r50,z50) in units ofn/d as functions of Ra forG51
and Pr54. ~—!: Imperfect bifurcation for Re515. ~a!, ~b!, and~c!
denote the strong state, the weak state, and the state that dev
out of the supercritical conducting solution. Ra* is the bifurcation
point of the imperfect bifurcation.~---!: Imperfect bifurcation for
Re525.
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bers larger than the value Ra* (Re)>Rac(m50), which de-
pends on Re, there exist two more solutions, theweak state
(b), and a state (c) ~Fig. 8!, which are identical at
Ra5Ra* . In both latter states buoyant and thermocapilla
forces are opposing in the sense that they favor differ
directions of vortex motion. As a result, two additional sm
vortices appear in the hot and the cold corner where
buoyant convection is weak and thermocapillary forces
strong. The small corner vortices are thermocapillary in o

-

e

lops

FIG. 8. Three different axisymmetric basic flow solutions f
Ra53200, Re525, Pr54, andG51.
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55 7041LINEAR STABILITY OF TWO-DIMENSIONAL . . .
gin and the flow is circulating opposite to the flow in th
large vortex of buoyant origin in the bulk. The weak sta
(b) @corresponding to Fig. 8~b!# is characterized by a stron
internal toroidal vortex which sense of rotation~downward
flow at r5z50 for Re.0! is determined by buoyancy. O
an increase of Ra both thermocapillary corner vortices
suppressed and only very small corner vortices remain.
larger of these corner vortices is always located downstre
the surface flow owing to the large buoyant vortex, i.e., at
hot corner for Re.0 and at the cold corner for Re,0. For
very high Rayleigh numbers the corner vortices may even
ally vanish. Flow state (c) @corresponding to Fig. 8~c!# has
developed out of the supercritical conducting state on
increase of Re. Contrary to the states (a) and (b) its tem-
perature field deviates least from the conducting profi
State (c) is associated with the smallest Nusselt numb
whereas the Nusselt number is largest for the strong s
(a). On an increase of Ra beyond Ra* the thermocapillary
corner vortices for state (c) grow and finally merge to form
a single thermocapillary vortex confined to a layer below
free surface. In the interior remains a weak buoyancy dri
vortex with opposite sense of rotation.

For an increasing Rayleigh number and zero Reyno
number there exists an infinite sequence of successive p
fork bifurcations out of the conducting state. The respect
two-dimensional neutral modes possess an increasing n
ber of radial nodes. In the presence of a small imperfec
due to a nonzero Reynolds number the branch (a) of order
n11 becomes connected with the type-c solution branch of
order n. These higher two-dimensional bifurcations a
however, not investigated here, because the correspon
solutions are most likely to be unstable with respect to thr
dimensional disturbances.

Due to the invariance~20! of the Oberbeck-Boussines
equations all two-dimensional vortex states are symme
with respect to Re50. The imperfect bifurcation for Re,0 is
shown in Fig. 7 as dashed lines. On a continuous decrea
the Reynolds number from positive to negative values
solution corresponding to the weak state (b) transforms
smoothly into the solution belonging to the strong state (a)
and vice versa.

The boundary Ra5Ra* (Re) of the parameter range fo
which all three nontrivial two-dimensional basic states~a,
b, andc! exist is shown as a dotted line in Fig. 9. The line
stability analysis shows that state (c) is always unstable
even with respect to two-dimensional perturbations. All ne
tral modes of the basic states (a) and (b) are stationary
along the neutral curves shown in Fig. 9.

For Pr54 andG51 the first instability for Re50 is three
dimensional withm52 at Rac(m52)51616 @9#. Since
Rac(m52) is smaller than Rac(m50) by a finite amount
this instability corresponds to the instability of the stro
state@The weak state can only exist for Ra.Rac(m50)#. On
an increase of the Rayleigh number (Re50) the linear
growth rate of infinitesimal perturbations of the strong st
becomes larger, reaches a maximum, and vanishes aga
Rac8(m52)53586.Rac(m50). The strong axisymmetric
basic state is linearly stable immediately above Ra5Rac8(m
52). Both bifurcation points at Re50 are connected in the
~Re,Ra! plane by the critical curve form52 of the strong
re
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state. Since the sign of the growth rate is preserved al
both sides of the critical curve, the strong state is unsta
with respect tom52 disturbances only inside the horizon
tally shaded closed area~see Fig. 9!.

If, for Ra* (Re50),Ra,Rac8(m52), the line Re50 is
crossed from either negative or positive Reynolds numb
the strong state solution transforms into the weak state s
tion. Since the disturbance growth rate is finite on the a
Re50, both the strong and the weak state are linearly
stable in a vicinity of the Re50 axis. While the real part of
the disturbance growth rates for the strong states cross
on the fullm52 curve in Fig. 9, the growth rate of the wea
states remain positive. Therefore, the weak states are
linearly unstable directly outside the horizontally shad
area.

As the neutral stability boundaries of the strong sta
with respect tom52 modes are followed for higher Ray
leigh numbers crossing Rac8(m52)56557, the neutral
curves apply to the stability of the weak states. Therefore,
weak states are linearly stable within the vertically hatch
area which is also bounded by a neutral curve correspon
to a mode withm51. Due to the same argument as giv
above also the strong states are linearly stable in the v
cally hatched area, but they are also linearly stable outsid
it.

In a vicinity of Re50 and for Ra.Rac2(m51) the roles
of the strong and weak states are reversed once again. T
fore, the strong state is unstable to anm51 mode for Ray-
leigh numbers that are larger than the values indicated by
solidm51 curve in Fig. 9. The weak states are all linea
unstable for Ra.Rac2(m51) regardless of the Reynold
number. Them51 curve terminates on the existence boun
ary of the weak state~dotted!.

From Fig. 9 two interesting general properties can be
tracted. The three-dimensional buoyant convection
Ra.Rac(m52) with basic modem52 is suppressed by
even weak (uReu,4) thermocapillary effects. Moreover

FIG. 9. Stability chart forG51 and Pr54. ~•••!: Ra* ; ~—!:
Linear stability boundaries of the strong state~a!; ~—!: Linear sta-
bility boundaries of the weak state~b!. In the horizontally shaded
area and to the right of the full (m51) curve the strong state i
unstable; it is linearly stable otherwise. In the vertically shaded a
the weak state is linearly stable; it is unstable otherwise. The ca
letter denote:~A!: Rac(m52)51616,~B!: Rac(m50)51825,~C!:
Rac8(m52)53586, and~D!: Rac2(m51)56557.
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there exists a range of Rayleigh numbers Ra.Rac8(m52),
for which the axisymmetric convection is linearly restab
lized and where for ReÞ0 two different axisymmetric state
(a) and (b) exist. Both states should be realizable in t
absence of finite amplitude instabilities.

IV. CONCLUDING REMARKS

The continuation of the (m51)-stability boundaries of
the strong state with respect to both stationary and oscilla
modes is depicted in Fig. 5. For large Rayleigh numbe
there always exists an interval of Reynolds numbers
which the two-dimensional~strong! basic state is linearly
stable. On the scale of Fig. 5 the Reynolds numbers that l
the linearly stable range from below and from above dep
nearly linearly on the Rayleigh number. If the linear ins
bilities of the axisymmetric base state are supercritical, thr
dimensional flow could be suppressed even for large R
leigh numbers by moderate thermocapillary effects. N
c
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that within the Oberbeck-Boussinesq approximation the
Ra plane is traversed along a ray originating from the ori
(Re5Ra50) with a slope given by Bd21Pr21, when the
temperature is varied as in experiments. An experime
verification of the stability boundaries found is still lackin
The range of complex bifurcation behavior around
'4000 for Pr54, however, seems to be accessible throu
experiments with small volume liquid bridges~cf. experi-
ments by Velten, Schwabe, and Scharmann@6#!, if test liq-
uids with small thermocapillary effect are employed. Su
experiments could also settle the question for a possible
teretic behavior, which cannot be answered within t
present linear analysis.
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