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Linear stability of two-dimensional combined buoyant-thermocapillary flow
in cylindrical liquid bridges
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(Received 6 February 1997

The combined buoyant-thermocapillary flow in cylindrical liquid bridges of unit aspect ratio is calculated by
a mixed finite-difference—Chebyshev-collocation method. Gravity is assumed to be parallel or antiparallel to
the cylinder’s axis. For dominating thermocapillarity the two-dimensional basic flow is unique at the onset of
instability. It is shown that additional buoyant body forces act stabilizing on the axisymmetric flow in high
Prandtl number fluids for both heating and cooling from below. For heating from below, the onset of time-
dependent convection is delayed to higher Marangoni numbers than for cooling from below, in agreement with
previously unexplained experimental findings. In the absence of thermocapillary effects two axisymmetric
convective solutions bifurcate from the conducting basic state. This perfect pitchfork bifurcation is perturbed
by weak thermocapillary forces. The linear stability of all three axisymmetric base states is investigated
numerically for Pe=4, a Prandtl number typical for model experimei1063-651X%97)13906-X

PACS numbg(s): 47.20.Bp, 47.20.Dr, 81.10.Fq

[. INTRODUCTION —T(—d/2)>0. By introducing the minus sign in the defini-
tion of the Rayleigh number, it is positive when the liquid is
A cylindrical volume of liquid captured between two rigid heated from below in agreement with the usual convention
coaxial disks of equal radii and different temperatures hasor pure buoyant flowgVelten, Schwabe, and Scharmdi&i
been frequently employeld—4] to model certain properties carried out extensive measurements of the onset of ther-
of the flow occurring in the float-zone crystal-growth processmocapillary convection in half zones. For heating from be-
[5]. This model is called half-zone model or nonisothermallow the critical Reynolds number for the onset of hydrother-
liquid bridge, a sketch of which is shown in Fig. 1. It has mal waves was nearly always found to be larger than that
emerged as an important paradigm for thermocapillary flow®btained during heating from above. This result is counter-
and their instabilities. intuitive, since heating from above should essentially result
For small temperature differenceésT imposed between in a stable density stratification which, from a naive point of
the upper and lower solid boundaries the basic flow driverview, should stabilize the basic two-dimensional flow.
by thermocapillary surface forces is steady and takes the The purpose of the present paper is to clarify the role of
form of a single toroidal vortex, if the aspect ralic=d/R  gravity on the onset conditions for three-dimensional flow.
(d: height,R: radiug is of order one. A measure of the flow To that end we consider the combined buoyant-
strength is provided by the thermocapillary Reynolds numbethermocapillary flow in a liquid bridge which axis is aligned
parallel to the gravity vector.
Re— yATd @ The applied temperature differenad is commonly used
pv’ ' as the control parameter in experiments. Then Gr and Re
where y=—da/dT denotes the negative coefficient of the
surface tensiorr with respect to temperature variations, AZ
the mean density, and the kinematic viscosity. On an in- QT
crease of the Reynolds or Marangoni number=Mre Pr the T o+ AT
P P 0
flow becomes three dimensional. For small Prandtl numbers
Pr=v/k (k: thermal diffusivity in the range of &Pr d/2
=0.07 the supercritical three-dimensional flow is steady. For
high Prandtl numbers Pr0.5 three-dimensional hydrother-

mal waves appear above the threshold Reynolds number Vo
Re., which propagate approximately azimuthally. While the v v
basic thermocapillary instabilities are well knovs#], the
role of buoyancy measured by the Grashof number 42

ATd®

Gr: gB—Z’ (2) TO R

14

or Rayleigh number Ra—PrGr remains obsured.(g: ac- FIG. 1. Sketch of a cylindrical liquid bridge. The flow direction

celeration of gravity3: thermal expansion coefficient. As in and thermocapillary shear stress are indicated by arrows for
most previous investigations we defindT=T(d/2) Ra>0, (§T1€,).
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TABLE I. Scales used for the nondimensionalization of the are imposed. The bridge is thus heated from above, if the

Oberbeck-Boussinesq equations. acceleration of gravity is directed in negatizelirection.
Decomposing the hydrodynamic fields into a steady two-
variable rz t = (u,v,w) p T dimensional solution and three-dimensional normal modes
scale d d?lv yATlpv vyAT/d AT
u Ug
v Uo
cannot be varied independently. Their relative magnitude, W (r,z,@,t)=| Wo | (r,2)
the dynamic Bond number p Po
Gr pg,Bd2 o b
Bd= Re™ 5 (3 0
p
may take different values. In the experiments of Velten, + W (r,ze"Mescet . (9
Schwabe, and Scharmafh®| using liquid bridges of length )
O(3 mm), the absolute value of the Rayleigh number corre- o

sponding to the critical temperature difference for the onset
of oscillatory three-dimensional flow was of the order of
|Rgd~1300 for Pr1, |R4~9000 for Pk7, and
[R4d~11 000 for P=49. The Rayleigh numbertRd for
Pr=7 and Pr49 are significantly higher than the critical
Rayleigh number for the onset of pure buoyant convection ~ R - N .

[7—9]. This is taken as an indication that buoyancy forces ~ SUtTRe{U-Vig+Uo-Vi}=—Vp+Al+BdOE,, (10)
cannot be neglected in a theoretical explanation of experi-
mental results even for liquid bridges as short as 3 mm.

where c.c. denotes the complex conjugads a complex
growth rate, andn an integer azimuthal wave number, the
linearized evolution equations for the disturbances read

. .1
s +Re(U-V o+ g YO} = = A6, (12)

Il. MATHEMATICAL FORMULATION
AND NUMERICAL SOLUTION TECHNIQUE where the hats have been dropped. The steady axisymmetri-
. o cal problem and the eigenvalue probléi®) and(11) have
We consider a liquid bridge of lengthbetween two con-  peen solved with a mixed finite-difference and Chebyshev-
centric rigid disks of equal radR. In the asymptotic limit of  ¢qjiocation technique. Details of the numerical procedure
large mean surface tension between the liquid and an ambjnd the validation of the code can be found 4 The reso-
ent passive gas the location of the free surface is fixed. For gitions used for the present calculations were(B0) finite
volumeV=7R?d it takes a straight cylindrical shape. If the gifference points in axial direction and 25 Gauss-
disks are heated differentially with a small temperature dif4 ghatto collocation points radially for Prandtl number 4
ferenceAT the fluid motion in the liquid is governed by the (0.02). With these resolutions the numerical error, defined as

Oberbeck-Boussinesq approximation in [4], was kept below 5% in all cases presented.
- - Energy transport considerations proved valuable for the
dl+Rel-VU=—Vp+Al+Bdee,, (4 analysis of the instability mechanisii4]. For later reference
. we give the Reynolds-Orr and thermal energy equation ob-
V-i=0, (5  tained by multiplying Eqg.(10) by d, Eqg. (11) by ©, and
integrating over the volume occupied by the fluid.
> 1
hbTReUVO=5 A0 © dEkin_}iJ 2dV=—D+M,+ M+l +1
dt 2dt \U YT 2t MeTlert o,
where the nondimensional temperatuge=(T—Tg)/AT (12)
(To: mean temperatuyehas been introduced and the vari-
ables have been made dimensionless using the characteristic dE; 1d
scales given in Table I. The boundary conditions for an in- FTEREET! 02dV=—-D1+l. (13
sulating free surfacp4] are v
3w+ 3d,0=0 The terms of viscous dissipati@, Marangoni surface work
v 1 per timeM, andM ., and the work done by buoyant forces
rar(—) +-9,0=0 1 | o are abbreviated as
r r onr= T (7)
u=0 . 02
9,0=0 D= fV(an)Zdv—sz(T)dF, (14)
while on the rigid disks the conditions
=0, #=+1/2 onz=+1/2, (8) M. JFWSZdF’ 9
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Mw=fFvS,(de, (16) 2500 [
3D
Gr
lo=gg | WO dV. (17)
eJv & 2000+ . .

HereF denotes the free cylindrical surface @the viscous
stress tensor. The energy production terms due to interaction
with the basic state are

5
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FIG. 2. Linear stability boundary Reas a function of the Ray-
leigh number forl'=1 and Pr0.02. The critical wave number is
m=2.
where the index numbers the terms consecutively. Analo-
gously, the thermal dissipation ra; and the thermal in- heated from above. Due to the definition of the temperature
jection ratel  are abbreviated, difference asAT=T(d/2)—T(—d/2) we define the Ray-
leigh number as Ra—Gr Pr. Then R& 0 for heating from

oW,
+w? —0) dv,
0z

1 > 2 below as usual. A change from a stable thermal stratification
DT_Fr fVVG)'V@dV’ (18 (Gr>0, Ra<0, g| 1€, to a thermal unstable stratification
(Gr<0, Ra>0, §g11€, may be imagined as an inversion of
3 90, 90, the g vector.
;=2 I1;=—Re U——+w——+w|dV,
i=1 v ar 0z
(19 A. Dominating thermocapillary flow

where®,= 6,—2z is the deviation of the basic temperature 1.Pr=0.02

field from the conductive profile. The integrals appearing in For Pr=0.02 the rang¢éRg <500 has been investigated.
the energy equations have been computed using SimpsonTe critical mode has the wave numbar2 and it is sta-
rule and finite differences for the derivatives of the fieldtionary as in the case of pure thermocapillary driving (Ra
guantities. =0) (see[4]). The stability boundary as a function of Ra is
shown in Fig. 2. The critical curve is nearly linear in the
IIl. RESULTS considered range of Rayleigh numbers. The basic state be-
) o . . comes destabilized for a thermally unstable density stratifi-
When investigating combined buoyant-thermocapillarycation(Gr< 0, Ra>0), while it is stabilized for heating from
flow instabilities it is useful to consider the limits of large above(Gr>0, Ra<0). This behavior is expected, since the
and small Bond numbers separately. When the Bond numbgj,sic temperature field does not deviate much from the con-
is small, the steady two-dimensional flows and their mstablll-ducting state. However, the result is not trivial.
ties will be dominated by thermocapillarity. For large Bd on  The thermal energy balance does not vary with Ra and it
the other hand, the flow will be mainly due to buoyant con-is not important for this range of parameters. The kinetic
vection, modified by small thermocapillary effects. The in- energy balance for Re2000 as a function of the Rayleigh
fluence of the respective second driving force cannot be es$;,mber is shown in Fig. 3. Like in the pure thermocapillary

timateda priori, since both the basic state and the neutralase the kinetic energy transfer due to the process associated
mode are affected in a nontrivial manner. The limit of large

and small Bond numbers is therefore investigated separately _

for aspect ratiol'=1 and insulating free surface B0. 1.5 ' ' '

Moreover, we shall discern between small £®.02) and Ty

large (Pe=4) Prandtl numbers.
The Oberbeck-Boussinesq equatidds—(6) and bound- L,

ary conditiong7) and(8) are invariant under the transforma- 00b Lo o dBe ]

tion I P

(Rez,u,v,p)—(—Re,~z,—u,—v,—p). (20

D
It follows that the two-dimensional basic states for mixed -1.5 . . .
convection (B&0) and their stability properties are sym- -400 -200 0 200 400
metric with respect to Re0. The symmetry operatio(20) Ra
corresponds to a reflection of the streamlineg-ad and an
inversion of the sense of rotation of the toroidal vortesr- FIG. 3. Kinetic energy balance as a function of the Rayleigh

tices. The following discussion is based on a liquid bridge number Ra for Re2000,I'=1, and P#=0.02.
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FIG. 4. Radial dependence of the shear rate, of the axisym-
metry basic state at=0 for Re=2000,I'=1, and P~ 0.02. (—):
Ra=0, (---): Ra=400, and(---): Ra= —400.

with |, is dominating. Therefore, the instability mechanism
is inertial as for Ra& 0. The work done by buoyant forces per
unit of time, 1g,=Bdf,w® dV, is insignificant since the
temperature field® of the neutral mode is very small. The
temperature field of the basic state for-R2000(not shown,

cf. [4]), however, deviates notably from the conducting pro-
file. Therefore, buoyant forces do modify the basic velocity

field. As a result the absolute value of the basic shear grad
ent (9,wg) supplying the energy for the disturbance growth
is reduced at the location of maximum amplificatiorear
r=0.75,z=0, se€[4]) for Ra<0 (see Fig. 4 This reduces
the destabilizing energy transfer tedry. Likewise, for Ra
>0, |,4 is enhanced compared to RA. These arguments
are based on the assumption that the neutral mode is un
fected by buoyancy. In fact, for the considered range of R
the critical mode has qualitatively the same form as for R
=0 [4].

2.Pr=4

For Pr=4 the stability boundary as a function of the Ray-
leigh number behaves differently. As for R the critical
mode is oscillatory with wave numben=2 and develops
continuously from a hydrothermal wave. The stability
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FIG. 6. Thermal energy balance as a function of the Rayleigh
number Ra for Re1200,I'=1, and P=4.

critical curve is located at Ra— 360+ 20) buoyancy forces
act stabilizing. Similar as for pure thermocapillary flow the
kinetic energy balance hardly changes with the parameters
(Ra). The thermal energy balang¢shown in Fig. 6 for Re
=1200 is important here. For Ra0 the contributions due

to I+, andl5 are relatively small, but they reach the mag-
nitude of I 1, the term responsible for the appearance of
hydrothermal waves, wheliRgd =10*. For Ra=0, the flow
F_md temperature fields of the hydrothermal wave vary nearly
exclusively in the ande directions and the energy is mainly
transported radially. At RaO(10%), however, a significant
amount of energy I¢,,l13) is transported convectively in
vertical direction. This vertical transport is based on the axial
component of the disturbance velocity field and couples to

tpe basic temperature field. The coupling to the conductive
ar- : o
iart of the basic temperature field is — as expected — sta-

ilizing for Ra<0 and destabilizing for Ra0 (see Fig. 6.

he coupling to®, (l1,), however, behaves opposite. As
shown by Wanschura, Kuhimann, and REah the deviation
0, of the basic temperature field from the conducting profile
leads to a strong stabilization of the axisymmetric steady
buoyant flow in rigid cylinders, when the liquid is heated
from below (Ra>0). The same effect is present in liquid
bridges. Both are strong for ReO(10%) but they nearly
compensate each other. Since the magnitudé pfis re-

boundary is displayed in Fig. 5 as a dashed curve. Except fatuced for increasing absolute values of Ra, the energy sup-

a small range of Rayleigh numbefe minimum of the
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FIG. 5. Stability diagram for large Rayleigh and Reynolds num-
bers(I'=1, Pr=4). For Re>0 the linearly stable range is bounded
from below by a stationaryni=1)-instability (—). It is bounded
from above by an oscillatory instability¢--) with m=2 or m=1.

ply to the neutral mode is determined by a sensitive balance
of strong opposing forces which yield a net stabilization of
the basic state for Ra0 as well as for Ra 0. Another more
hand-waving explanation would be the following. Hydro-
thermal waves in liquid bridges are characterized by strong
axial vorticity [4]. Buoyant convection on the contrary favors
convection rolls with strong horizontal vorticity. Therefore,
both types of convection structures are incompatible in the
sense that their respective transport mechanisms exclude
each other. As a consequence both modes of convection are
mutually suppressed yielding a stabilization of the basic two-
dimensional state.

Since the stabilization for negative Rayleigh numbers is
less pronounced than that for positive Rayleigh numbers, the
critical Reynolds numbers measured in terrestrial laborato-
ries for heating from above should be less than the ones for
heating from below. In fact this holds true for the measure-
ments of Velten, Schwabe, and Scharmgéirfor fluids with
Pr=1 and P 7. This experimental result—not explained
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FIG. 7. Perfect bifurcation of the two-dimensional natural con-
vection (---) and imperfect bifurcation due to the action of weak
thermocapillary surface forces. Shown are the axial velocities in the
centerwy(r =0,2=0) in units of »/d as functions of Ra fof’'=1 r y T T
and P 4. (—): Imperfect bifurcation for Re +5. (a), (b), and(c) b) 04
denote the strong state, the weak state, and the state that develop
out of the supercritical conducting solution. R the bifurcation
point of the imperfect bifurcation(---): Imperfect bifurcation for oz2r 1
Re=-5.

8 -0.0}F 1
previously—can thus be understood in the framework of the

stability analysis performed. Therefore, critical Reynolds

numbers obtained under weightlessness conditions=(Ra -0zr i
must be smaller than those obtained in terrestrial experi-
ments, apart from a small range of Rayleigh numbers -0.4r¢
(=700sRa<0 for Pr=4) around the minimum of s L : .
Re(Ra). This conclusion is in qualitative agreement with 60 02 04 06 08 10
recent drop tower experimenf40] in which the onset of rf
thermocapillary induced flow oscillations have been ob-
served after a high Prandtl number liquid bridge was sub-
jected to a sudden transition frong o ~0g.
c) 0.4}
B. Dominating buoyant flow

The stability map for dominating buoyancy is more com- 0.2}
plicated. The main reason is that up to three different two-
dimensional basic flow states may exist. The typical bifurca- s —o0ok
tion structures are discussed here For 1 and P 4. '

Let us first consider only two-dimensional flows regard-
less of their stability with respect to three-dimensional per- -02r
turbations. For Re0 the conductive stataif=0,=0) be-
comes linearly unstable to a two-dimensional mode at —04}
Ra.(m=0)=1825 via a perfect pitchfork bifurcatiosee
[9]). This bifurcation is shown as a dotted line in Fig. 7. For 0.0
Ra>Ra.(m=0) there exist two equivalent supercritical con-
vective solutions representing flow states with up or down-
flow at the centern(=z=0) of the liquid bridge in addition FIG. 8. Three different axisymmetric basic flow solutions for
to the unstable conducting state. Ra= 3200, Re=—5, Pr=4, andl'=1.

If Re#0 a structural instability11] occurs and the bifur-

cation becomes imperfect. The imperfect bifurcation for Rebers larger than the value RgRe}=Ra.(m=0), which de-
=+5is drawn as full lines in Fig. 7. For a thermally unstable pends on Re, there exist two more solutions, weak state
stratification (Ra0) the preferred two-dimensional convec- (b), and a state ) (Fig. 8, which are identical at
tive state has upflow in the center if R@. This state will be Ra=Ra, . In both latter states buoyant and thermocapillary
called strong state(a) in the following. The corresponding forces are opposing in the sense that they favor different
flow field consists of a single toroidal vortex, which sense ofdirections of vortex motion. As a result, two additional small
rotation is supported by both buoyant and thermocapillarywortices appear in the hot and the cold corner where the
forces(see Fig. 1; Fig. 8 applies to Re-5. For Re>0 the  buoyant convection is weak and thermocapillary forces are
streamlines must be reflected &t 0.). For Rayleigh num- strong. The small corner vortices are thermocapillary in ori-
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gin and the flow is circulating opposite to the flow in the 20 I
large vortex of buoyant origin in the bulk. The weak state r

(b) [corresponding to Fig.(®)] is characterized by a strong 12+ 7
internal toroidal vortex which sense of rotatiétownward r

flow atr=z=0 for Re>0) is determined by buoyancy. On 4r 7
an increase of Ra both thermocapillary corner vortices are § - Hin! B q
suppressed and only very small corner vortices remain. The —4F ' .
larger of these corner vortices is always located downstream

the surface flow owing to the large buoyant vortex, i.e., at the —12r s
hot corner for Re-0 and at the cold corner for R&. For -
very high Rayleigh numbers the corner vortices may eventu- —20 i
ally vanish. Flow stated) [corresponding to Fig.(8)] has 0 12
developed out of the supercritical conducting state on an x10°

increase of Re. Contrary to the state§ @nd () its tem- N
perature field deviates least from the conducting profile. FIG. 9. Stability chart forl’'=1 and Pr4. (--): Ra, ; (—):
State €) is associated with the smallest Nusselt number Linear stability boundaries of the strong stéae (—): Linear sta-

whereas the Nusselt number is largest for the strong staflity boundaries of the weak state). In the horizontally shaded
area and to the right of the fullnf=1) curve the strong state is

(a). On an. increase of Ra beyond ,REhe thermocapillary unstable; it is linearly stable otherwise. In the vertically shaded area
corper vortices for §tatec§ grow and' finally merge to form the weak state is linearly stable; it is unstable otherwise. The capital
a single thermocapillary vortex confined to a layer below theetter denote(A): Ra,(m=2)=1616,(B): Ra,(m=0)=1825,(C):
free surface. In the interior remains a weak buoyancy driveiRyg (m=2)=3586, and(D): Ra,,(m=1)=6557.
vortex with opposite sense of rotation.
For an increasing Rayleigh number and zero Reynolds . . .
number there exists an infinite sequence of successive pitc§iate- Since the sign of the growth rate is preserved along
fork bifurcations out of the conducting state. The respective?©th sides of the critical curve, the strong state is unstable
two-dimensional neutral modes possess an increasing nunidth respect tom=2 disturbances only inside the horizon-
ber of radial nodes. In the presence of a small imperfectiof@lly shaded closed ardaee Fig. 9.
due to a nonzero Reynolds number the brarghdf order If, for Ra, (Re=0)<Ra<Rg(m=2), the line Re-0 is
n+1 becomes connected with the typesolution branch of crossed from either negative or positive Reynolds numbers,
order n. These higher two-dimensional bifurcations are,the strong state solution transforms into the weak state solu-
however, not investigated here, because the correspondirign. Since the disturbance growth rate is finite on the axis
solutions are most likely to be unstable with respect to threeRe=0, both the strong and the weak state are linearly un-
dimensional disturbances. stable in a vicinity of the Re0 axis. While the real part of
Due to the invariancé20) of the Oberbeck-Boussinesq the disturbance growth rates for the strong states cross zero
equations all two-dimensional vortex states are symmetrign the fullm=2 curve in Fig. 9, the growth rate of the weak
with respect to Re:0. The imperfect bifurcation for Re0is  states remain positive. Therefore, the weak states are also

shown in Fig. 7 as dashed lines. On a continuous decrease piearly unstable directly outside the horizontally shaded
the Reynolds number from positive to negative values theyrea.

solution corresponding to the weak state) (transforms As the neutral stability boundaries of the strong states
smoothly into the solution belonging to the strong stat® (- with respect tom=2 modes are followed for higher Ray-
and vice versa. leigh numbers crossing R@n=2)=6557, the neutral

The boundary RaRa, (Re) of the parameter range for cyrves apply to the stability of the weak states. Therefore, the
which all three nontrivial two-dimensional basic states  \eak states are linearly stable within the vertically hatched
b, andc) exist is shown as a dotted line in Fig. 9. The linear grea which is also bounded by a neutral curve corresponding
Stablllty analysis shows that StatE)(iS always unstable, to a mode withm=1. Due to the same argument as gi\/en
even with respect to two-dimensional perturbations. All neuahove also the strong states are linearly stable in the verti-
tral modes of the basic statea)(and (b) are stationary cally hatched area, but they are also linearly stable outside of
along the neutral curves shown in Fig. 9. it.

For Pr=4 andIl'=1 the first instability for Re-0 is three In a vicinity of Re=0 and for R&Ra,,(m=1) the roles
dimensional withm=2 at Ra(m=2)=1616 [9]. Since of the strong and weak states are reversed once again. There-
Ra(m=2) is smaller than Rgm=0) by a finite amount fore, the strong state is unstable tomr 1 mode for Ray-
this instability corresponds to the instability of the strongleigh numbers that are larger than the values indicated by the
state[ The weak state can only exist for RRa(m=0)]. On  solid m=1 curve in Fig. 9. The weak states are all linearly
an increase of the Rayleigh number (R# the linear unstable for Ra&Ra,(m=1) regardless of the Reynolds
growth rate of infinitesimal perturbations of the strong statenumber. Than=1 curve terminates on the existence bound-
becomes larger, reaches a maximum, and vanishes againg of the weak statédotted.

Rg,(m=2)=3586>Rg(m=0). The strong axisymmetric From Fig. 9 two interesting general properties can be ex-
basic state is linearly stable immediately above=Ra,(m tracted. The three-dimensional buoyant convection for
=2). Both bifurcation points at Re0 are connected in the Ra>Ra(m=2) with basic modem=2 is suppressed by
(Re,Ra plane by the critical curve fom=2 of the strong even weak [Re€<4) thermocapillary effects. Moreover,
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there exists a range of Rayleigh numbers>Ra,(m=2), that within the Oberbeck-Boussinesq approximation the Re,
for which the axisymmetric convection is linearly restabi- Ra plane is traversed along a ray originating from the origin
lized and where for Re0 two different axisymmetric states (Re=Ra=0) with a slope given by Bd'Pr, when the

(a) and (b) exist. Both states should be realizable in thetemperature is varied as in experiments. An experimental

absence of finite amplitude instabilities. verification of the stability boundaries found is still lacking.
The range of complex bifurcation behavior around Ra
IV. CONCLUDING REMARKS ~4000 for P=4, however, seems to be accessible through

. . N . experiments with small volume liquid bridgesf. experi-
The continuation of the ng=1)-stability boundaries of ments by Velten, Schwabe, and Scharmf@}, if test lig-
the strong state with respect to both stationary and oscillatorids with small thermocapillary effect are employed. Such
modes is depicted in Fig. 5. For large Rayleigh numbersexperiments could also settle the question for a possible hys-

there always exists an interval of Reynolds numbers fokeretic behavior, which cannot be answered within the
which the two-dimensionalstrong basic state is linearly present linear analysis.

stable. On the scale of Fig. 5 the Reynolds numbers that limit
the linearly stable range from below and from above depend
nearly linearly on the Rayleigh number. If the linear insta-
bilities of the axisymmetric base state are supercritical, three-
dimensional flow could be suppressed even for large Ray- This work has been supported by Deutsche Forschungs-
leigh numbers by moderate thermocapillary effects. Notegemeinschaft under Grant No. Ku896/2-2.
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